Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N^2 -(7-Bromo-9-butyl-9*H*-carbazol-2-yl)-9,9-diethyl- N^2 , N^7 , N^7 -triphenyl-9*H*fluorene-2,7-diamine

Abhishek Baheti,^a K. R. Justin Thomas,^a \ddagger Seik Weng Ng^b and Edward R. T. Tiekink^c \ast

^aOrganic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 20 February 2012; accepted 22 February 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.044; wR factor = 0.112; data-to-parameter ratio = 16.2.

In the title molecule, $C_{51}H_{46}BrN_3$, the central fluorene residue is planar (r.m.s. deviation = 0.0203 Å), as is the carbazole system (r.m.s. deviation = 0.0154 Å), and these groups are almost orthogonal [dihedral angle = 79.72 (3)°]. The threedimensional architecture is consolidated by $C-H\cdots\pi$ interactions. The butyl substituent is disordered with two sites resolved for the terminal propyl atoms; the major component had a site-occupancy factor of 0.686 (3).

Related literature

For the use of carbazole and fluorene derivatives as holetransporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells, see: Thomas *et al.* (2001, 2004); Baheti *et al.* (2009, 2011). For related structures, see: Low *et al.* (2005); Chen *et al.* (2009); Gagnon & Laliberté (2008).

‡ Additional correspondence author, e-mail: krjt8fcy@iitr.ernet.in.

Experimental

Crystal data

 $C_{51}H_{46}BrN_3$ $V = M_r = 780.82$
 $M_r = 780.82$ $Z = M_r = 10.6744$
 $M_r = 10.6744$ (2)

 $M_r = 43.6607$ (6)

 $\beta = 92.114$ $(2)^\circ$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector

Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{min} = 0.836$, $T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.112$ S = 1.058220 reflections 506 parameters $V = 4032.56 (13) \text{ Å}^3$ Z = 4Cu K\alpha radiation $\mu = 1.68 \text{ mm}^{-1}$ T = 100 K $0.22 \times 0.18 \times 0.14 \text{ mm}$

17423 measured reflections 8220 independent reflections 7219 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

28 restraints H-atom parameters constrained $\begin{aligned} &\Delta\rho_{max}=0.39 \text{ e } \text{\AA}^{-3}\\ &\Delta\rho_{min}=-0.66 \text{ e } \text{\AA}^{-3}\end{aligned}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1-Cg3 are the centroids of the C13-C18, C7-C12 and C36···C41 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10\cdots Cg1^{i}$	0.95	2.67	3.444 (3)	139
$C20-H20\cdots Cg2^{n}$	0.95	2.85	3.579 (2)	135
$C44 - H44 \cdots Cg3^{m}$	0.95	2.99	3.836 (3)	149

Symmetry codes: (i) x - 1, y, z; (ii) -x, -y + 1, -z + 1; (iii) $x + \frac{3}{2}, -y - \frac{1}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

KRJT is thankful to Department of Science and Technology, New Delhi, India, for financial support (ref. No. DST/ TSG/ME/2010/27). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5825).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Baheti, A., Singh, P., Lee, C.-P., Thomas, K. R. J. & Ho, K.-C. (2011). J. Org. Chem. 76, 4910–4920.

Baheti, A., Tyagi, P., Thomas, K. R. J., Hsu, Y. C. & Lin, J. T. (2009). J. Phys. Chem. C, 113, 8541-8547.

- Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, 0574. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147.
- Low, P. J., Paterson, M. A. J., Yufit, D. S., Howard, J. A. K., Cherryman, J. C., Tackley, D. R., Brooke, R. & Brown, B. (2005). J. Mater. Chem. 15, 2304– 2315.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Chuan, C.-H. (2004). Chem. Mater. 16, 5437–5444.
- Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. **123**, 9404–9411.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, 0860-0861 [doi:10.1107/S160053681200791X]

N^2 -(7-Bromo-9-butyl-9*H*-carbazol-2-yl)-9,9-diethyl- N^2 , N^7 , N^7 -triphenyl-9*H*-fluorene-2,7-diamine

Abhishek Baheti, K. R. Justin Thomas, Seik Weng Ng and Edward R. T. Tiekink

Comment

Carbazole (Thomas *et al.*, 2001; Thomas *et al.*, 2004) and fluorene (Baheti *et al.*, 2009; Baheti *et al.*, 2011) derivatives have been widely used as hole-transporting and emitting materials in organic light-emitting diodes and as sensitizers in dye-sensitized solar cells. The title compound, N^2 -(7-bromo-9-butyl-9*H*-carbazol-2-yl)-9,9-diethyl- N^2 , N^7 , N^7 -triphenyl-9*H*-fluorene-2,7-diamine (I), was synthesized as an intermediate in the synthetic sequence for the development of donor-acceptor compounds suitable for application as sensitizers in dye-sensitized solar cells.. Herein, the crystal structure determination of (I) is described. Related structures are known, *i.e.* 9,9-diethyl- N^2 , N^7 , N^7 -tetraphenyl-9*H*fluorene-2,7-diamine (Low *et al.*, 2005), 9-butyl-9*H*-carbazole (Chen *et al.*, 2009) and 2,7-dibromo-9-octyl-9*H*-carbazole (Gagnon & Laliberté, 2008).

In (I), Fig. 1, the 13 non-hydrogen atoms of the central fluorene residue are co-planar (r.m.s. deviation = 0.0203 Å). Similarly, the 13 non-hydrogen atoms of the carbazole system forms a plane (r.m.s. deviation = 0.0154 Å). The dihedral angle between the fluorene and carbazole fused ring systems is 79.72 (3)°, indicating an almost orthogonal relationship. The fluorene system forms dihedral angles of 88.22 (6) and 58.51 (7)° with the C1–C6 and C7–C12 N1-amine-phenyl rings, respectively; the dihedral angle between these phenyl rings is 64.45 (8)°. At the N2-amine side of the molecule, the dihedral angles formed between the fluorene and carbazole fused ring systems with the N2-bound phenyl ring are 62.96 (6) and 71.53 (6)°, respectively. With respect to the five-membered ring in the fluorene residue, the ethyl substituents are virtually perpendicular as seen in the values of the C17–C25–C26–C27 and C17–C25–C28–C29 torsion angles of 54.4 (3) and -60.6 (3)°, respectively. Finally, the major component of the disordered *n*-butyl chain adopts an extended *trans* conformation with the C48–C49–C50–C51 torsion angle being 173.2 (3)°; the equivalent value for the minor component is 179.8 (8)°.

Molecules are consolidated in the three-dimensional architecture by C—H $\cdots\pi$ interactions, Fig. 2 and Table 1.

Experimental

A mixture of 9,9-diethyl- N^2 , N^7 -triphenyl-9*H*-fluorene-2,7-diamine, 2,7-dibromo-9-butyl-9*H*-carbazole, bis(diphenyl-phosphino)ferrocene, sodium *tert*-butoxide, and toluene (20 ml) was heated at 353 K for 36 h. The resultant solution was poured into water and extracted with dichloromethane. After drying over anhydrous sodium sulfate the combined di-chloromethane extract was evaporated to yield a crude product. It was purified by column chromatography on silica gel using 4:1 mixture of hexanes and dichloromethane. White solid. Yield 66%; *M*.pt. 413–415 K. Re-crystallization was by slow evaporation of a solution of (I) from a 1:1 mixture of hexanes and dichloromethane. ¹H NMR (500 MHz, CDCl₃) δ 0.39 (t, J = 7.5 Hz, 6 H), 0.85–0.88 (m, 3 H), 1.29 (dd, J = 15.5 Hz, 7.5 Hz, 2 H), 1.71 (t, J = 7.5 Hz, 2 H), 1.81 (dd, J = 14.5 Hz, 7.5 Hz, 4 H), 4.06 (t, J = 7.0 Hz, 2 H), 6.98 (m, 5 H), 7.07–7.14 (m, 8 H), 7.17 (d, J = 8.5 Hz, 2 H), 7.23–7.25 (m, 3 H), 7.26–7.30 (m, 4 H), 7.46 (d, J = 1.0 Hz, 1 H), 7.49–7.52 (m, 2 H), 7.82 (d, J = 8.5 Hz, 1 H), 7.87 (d, J = 8.5 Hz, 2 Hz, 1 H

1 H); ¹³C NMR (125.77 MHz, CDCl₃) δ 151.32, 151.25, 148.45, 148.11, 147.02, 146.82, 146.58, 141.76, 141.71, 136.69, 136.66, 129.16, 123.87, 122.38, 122.06, 121.98, 120.83, 120.76, 119.80, 119.58, 119.45, 118.27, 117.74, 116.91, 111.58, 104.15, 56.09, 42.82, 32.59, 30.95, 20.45, 13.81, 8.63. HRMS calcd. for C₅₁H₄₆BrN₃ [*M* + H] m/z 780.2948 found 780.2945.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, U_{iso} (H) 1.2 to $1.5U_{eq}$ (C)] and were included in the refinement in the riding model approximation. The terminal propyl group of the butyl substituent was found to be disordered. Two sites were resolved and from fractional refinement (common anisotropic displacement parameters for pairs of atoms, and with 1,2- and 1,3- C—C distance constraints = 1.50 ± 0.01 and 2.35 ± 0.01 Å, respectively). The major component had a site occupancy factor = 0.686 (3).

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO* (Agilent, 2010); data reduction: *CrysAlis PRO* (Agilent, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only the major component of the disordered n-butyl group is shown for reasons of clarity.

Figure 2

A view in projection down the *b* axis of the unit-cell contents of (I). The C—H $\cdots\pi$ interactions are shown as purple dashed lines.

N²-(7-Bromo-9-butyl-9H-carbazol-2-yl)-9,9-diethyl- N²,N⁷,N⁷-triphenyl-9H-fluorene-2,7-diamine

Crystal data	
$C_{51}H_{46}BrN_3$	$V = 4032.56 (13) Å^3$
$M_r = 780.82$	Z = 4
Monoclinic, $P2_1/n$	F(000) = 1632
Hall symbol: -P 2yn	$D_{\rm x} = 1.286 { m Mg} { m m}^{-3}$
a = 8.6585 (2) Å	Cu K α radiation, $\lambda = 1.54184$ Å
b = 10.6744 (2) Å	Cell parameters from 7520 reflections
c = 43.6607 (6) Å	$\theta = 3.0-76.8^{\circ}$
$\beta = 92.114 \ (2)^{\circ}$	$\mu = 1.68 \text{ mm}^{-1}$

T = 100 KWedge, colourless

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector	$T_{\min} = 0.836$, $T_{\max} = 1.000$ 17423 measured reflections
Radiation source: SuperNova (Cu) X-ray Source	8220 independent reflections 7219 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.025$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 75.0^{\circ}, \theta_{\rm min} = 4.1^{\circ}$
ωscan	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -13 \rightarrow 13$
(CrysAlis PRO; Agilent, 2010)	$l = -54 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from
$wR(F^2) = 0.112$	neighbouring sites
S = 1.05	H-atom parameters constrained
8220 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2 + 2.7341P]$
506 parameters	where $P = (F_o^2 + 2F_c^2)/3$
28 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.66 \text{ e} \text{ Å}^{-3}$

 $0.22\times0.18\times0.14~mm$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Br1	0.49451 (3)	0.07445 (3)	0.162449 (5)	0.04399 (10)	
N1	-0.0180 (3)	0.1837 (2)	0.52239 (4)	0.0408 (5)	
N2	0.4685 (3)	0.59397 (17)	0.35350 (4)	0.0359 (4)	
N3	0.3902 (2)	0.40069 (17)	0.25166 (4)	0.0314 (4)	
C1	0.0477 (3)	0.1430 (2)	0.55124 (5)	0.0382 (5)	
C2	-0.0076 (4)	0.1870 (3)	0.57881 (5)	0.0465 (6)	
H2	-0.0917	0.2441	0.5788	0.056*	
C3	0.0613 (4)	0.1465 (3)	0.60610 (6)	0.0568 (8)	
Н3	0.0246	0.1767	0.6250	0.068*	
C4	0.1818 (4)	0.0636 (3)	0.60631 (6)	0.0605 (8)	
H4	0.2292	0.0372	0.6252	0.073*	
C5	0.2344 (4)	0.0182 (3)	0.57888 (7)	0.0578 (8)	
Н5	0.3166	-0.0408	0.5789	0.069*	
C6	0.1670 (3)	0.0588 (3)	0.55128 (6)	0.0463 (6)	

H6	0.2036	0.0281	0.5324	0.056*
C7	-0.1775 (3)	0.1817 (2)	0.51665 (5)	0.0387 (5)
C8	-0.2718 (3)	0.1027 (2)	0.53283 (6)	0.0434 (6)
H8	-0.2275	0.0493	0.5482	0.052*
C9	-0.4296 (3)	0.1006 (2)	0.52690 (6)	0.0464 (6)
H9	-0.4924	0.0474	0.5387	0.056*
C10	-0.4982 (3)	0.1748 (2)	0.50412 (6)	0.0442 (6)
H10	-0.6064	0.1716	0.4998	0.053*
C11	-0.4046 (3)	0.2534 (2)	0.48794 (5)	0.0424 (6)
H11	-0.4493	0.3051	0.4723	0.051*
C12	-0.2482 (3)	0.2583 (2)	0.49409 (5)	0.0405 (6)
H12	-0.1867	0.3146	0.4829	0.049*
C13	0.0785 (3)	0.2533 (2)	0.50293 (5)	0.0377 (5)
C14	0.1720 (3)	0.3484 (2)	0.51471 (5)	0.0402 (6)
H14	0.1775	0.3625	0.5362	0.048*
C15	0.2576 (3)	0.4233 (2)	0.49566 (5)	0.0388 (5)
H15	0.3235	0.4869	0.5040	0.047*
C16	0.2453 (3)	0.4037 (2)	0.46407 (5)	0.0359 (5)
C17	0.1538 (3)	0.3060 (2)	0.45225 (5)	0.0344 (5)
C18	0.0723 (3)	0.2289 (2)	0.47129 (5)	0.0376 (5)
H18	0.0133	0.1607	0.4632	0.045*
C19	0.3147 (3)	0.4699 (2)	0.43853 (5)	0.0340 (5)
C20	0.4145 (3)	0.5718 (2)	0.43754 (5)	0.0366 (5)
H20	0.4473	0.6131	0.4559	0.044*
C21	0.4658 (3)	0.6129 (2)	0.40948 (5)	0.0365 (5)
H21	0.5358	0.6814	0.4088	0.044*
C22	0.4151 (3)	0.5542 (2)	0.38222 (5)	0.0338 (5)
C23	0.3134 (3)	0.4527 (2)	0.38326 (5)	0.0336 (5)
H23	0.2789	0.4124	0.3648	0.040*
C24	0.2632 (3)	0.4112 (2)	0.41116 (5)	0.0331 (5)
C25	0.1528 (3)	0.3044 (2)	0.41730 (5)	0.0342 (5)
C26	-0.0112 (3)	0.3300 (2)	0.40369 (5)	0.0387 (5)
H26A	-0.0062	0.3341	0.3811	0.046*
H26B	-0.0784	0.2584	0.4087	0.046*
C27	-0.0858(3)	0.4496 (3)	0.41489 (6)	0.0447 (6)
H27A	-0.1898	0.4577	0.4055	0.067*
H27B	-0.0231	0.5219	0.4092	0.067*
H27C	-0.0926	0.4465	0.4372	0.067*
C28	0.2109 (3)	0.1793 (2)	0.40461 (5)	0.0380 (5)
H28A	0.1418	0.1114	0.4112	0.046*
H28B	0.2039	0.1825	0.3819	0.046*
C29	0.3755 (3)	0.1469 (2)	0.41470 (5)	0.0437 (6)
H29A	0.4037	0.0658	0.4060	0.066*
H29B	0.3836	0.1422	0.4371	0.066*
H29C	0.4457	0.2118	0.4075	0.066*
C30	0.4771 (3)	0.7215 (2)	0.34542 (5)	0.0335 (5)
C31	0.3800 (3)	0.8101 (2)	0.35774 (5)	0.0412 (6)
H31	0.3056	0.7857	0.3720	0.049*
C32	0.3923 (4)	0.9345 (2)	0.34904 (6)	0.0542 (8)
	· /	× /	× /	× /

H32	0.3260	0.9951	0.3576	0.065*	
C33	0.4991 (4)	0.9723 (3)	0.32808 (7)	0.0582 (9)	
H33	0.5066	1.0579	0.3223	0.070*	
C34	0.5945 (4)	0.8839 (3)	0.31569 (6)	0.0533 (7)	
H34	0.6673	0.9084	0.3011	0.064*	
C35	0.5848 (3)	0.7599 (2)	0.32438 (6)	0.0422 (6)	
H35	0.6523	0.7000	0.3159	0.051*	
C36	0.4962 (3)	0.5007 (2)	0.33102 (5)	0.0320 (5)	
C37	0.6019 (3)	0.4045 (2)	0.33790 (5)	0.0339 (5)	
H37	0.6517	0.4012	0.3576	0.041*	
C38	0.6348 (3)	0.3145 (2)	0.31642 (5)	0.0317 (5)	
H38	0.7063	0.2493	0.3213	0.038*	
C39	0.5614 (3)	0.3203 (2)	0.28737 (5)	0.0286 (4)	
C40	0.4525 (3)	0.4151 (2)	0.28119 (5)	0.0303 (4)	
C41	0.4176 (3)	0.5065 (2)	0.30272 (5)	0.0319 (5)	
H41	0.3433	0.5700	0.2982	0.038*	
C42	0.5683 (3)	0.2456(2)	0.25990(5)	0.0290(4)	
C43	0.6524(3)	0.12100(2) 0.1410(2)	0.25350(5)	0.0290(1) 0.0327(5)	
H43	0.7252	0.1047	0.2658	0.039*	
C44	0.6302 (3)	0.1017 0.0897(2)	0.2258 (5)	0.039	
H44	0.6873	0.0183	0.22230 (3)	0.0349 (3)	
C45	0.5223 (3)	0.0103 0.1448 (2)	0.2107 0.20215(5)	0.012 0.0333(5)	
C46	0.3225(3) 0.4356(3)	0.1440(2) 0.2488(2)	0.20215(5)	0.0335(5) 0.0324(5)	
U40	0.4550 (5)	0.2466 (2)	0.20913 (3)	0.0324 (5)	
C47	0.3030	0.2844 0.2000 (2)	0.1940 0.23854 (5)	0.039	
C47	0.4003(3)	0.2990(2) 0.4762(2)	0.23805(5)	0.0230(4) 0.0357(5)	
U18A	0.2043 (3)	0.4702(2)	0.25305 (5)	0.0337 (3)	0.214(2)
1140A	0.164	0.4206	0.2334	0.043*	0.314(3)
1140D	0.2104	0.4290	0.2203	0.043*	0.514(3)
1140C	0.2073	0.3133	0.2348	0.043*	0.080(3)
C40	0.1910	0.4190	0.2208	0.043°	0.080(3)
U49	0.3140(3)	0.0037 (3)	0.22098 (8)	0.0390 (9)	0.080(3)
1149A	0.2213	0.6482	0.2209	0.048*	0.080(3)
П 4 9D С50	0.3082	0.0462	0.2442 0.20061 (8)	0.046	0.080(3)
	0.4191 (4)	0.5989 (5)	0.20001 (8)	0.0440 (8)	0.080(3)
	0.5/15	0.5407	0.1641	0.053*	0.080(3)
ПЗОВ С51	0.3183	0.3398	0.2072	0.035°	0.080(3)
	0.4481(0)	0.7292 (4)	0.16639 (11)	0.0031 (12)	0.080(3)
HJIA USID	0.5068	0.7238	0.1699	0.098*	0.080(3)
HOLD	0.50/3	0.7770	0.2041	0.098*	0.686(3)
HSIC CAOL	0.3491	0.7709	0.1840	0.098*	0.080(3)
C49 ^r	0.3129 (14)	0.5782(7)	0.21644 (15)	0.0396 (9)	0.314(3)
H49C	0.3/16	0.5411	0.1996	0.048*	0.314(3)
H49D	0.2203	0.6201	0.2073	0.048*	0.314(3)
C50 [°]	0.4112 (10)	0.6717(6)	0.23341 (16)	0.0440 (8)	0.314(3)
HOUC	0.5041	0.0302	0.2426	0.053*	0.314(3)
H3UD	0.352/	0.7095	0.2501	0.055^{*}	0.314(3)
	0.4580 (12)	0.7712 (9)	0.2113 (2)	0.0031 (12)	0.314(3)
HSID	0.54/9	0.7425	0.2003	0.098*	0.314(3)
HOLE	0.4846	0.8480	0.2227	0.098*	0.314 (3)

H51F	0.3722	0.7881	0.19	967	0.098*	0.314 (3)
Atomic	displacement para	ameters $(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.06625 (19)	0.03919 (15)	0.02643 (13)	0.00117 (12)	0.00057 (11)	-0.01037 (10)
N1	0.0573 (13)	0.0421 (11)	0.0232 (9)	0.0003 (10)	0.0030 (8)	0.0076 (8)
N2	0.0606 (13)	0.0275 (9)	0.0198 (8)	-0.0020(9)	0.0055 (8)	-0.0026 (7)
N3	0.0445 (11)	0.0285 (9)	0.0210 (8)	0.0051 (8)	-0.0021(7)	-0.0025 (7)
C1	0.0570 (15)	0.0344 (12)	0.0233 (10)	-0.0016 (11)	0.0011 (10)	0.0044 (9)
C2	0.0700 (18)	0.0409 (14)	0.0289 (12)	0.0007 (13)	0.0047 (11)	-0.0014 (10)
C3	0.085 (2)	0.0601 (18)	0.0251 (12)	-0.0110 (17)	-0.0002(13)	-0.0028(12)
C4	0.070 (2)	0.077 (2)	0.0333 (14)	-0.0104 (17)	-0.0117 (13)	0.0186 (14)
C5	0.0559 (18)	0.0627 (19)	0.0546 (17)	0.0045 (15)	0.0016 (13)	0.0244 (15)
C6	0.0633 (17)	0.0413 (14)	0.0348 (13)	0.0030 (12)	0.0070 (11)	0.0087 (11)
C7	0.0594 (16)	0.0329 (12)	0.0236 (10)	0.0002 (11)	0.0009 (10)	-0.0001 (9)
C8	0.0607 (16)	0.0392 (13)	0.0301 (12)	-0.0017(12)	-0.0020 (11)	0.0076 (10)
C9	0.0627 (17)	0.0377(13)	0.0387 (13)	-0.0076(12)	-0.0006(12)	0.0059 (11)
C10	0.0542 (15)	0.0390 (13)	0.0388 (13)	-0.0032(12)	-0.0057(11)	0.0003 (11)
C11	0.0643 (17)	0.0335 (12)	0.0291 (11)	0.0027 (11)	-0.0023(11)	0.0013 (10)
C12	0.0603 (16)	0.0341 (12)	0.0272 (11)	0.0014 (11)	0.0045 (10)	0.0025 (9)
C13	0.0556 (15)	0.0337 (12)	0.0241 (10)	0.0020 (11)	0.0031 (10)	0.0037 (9)
C14	0.0666 (17)	0.0349 (12)	0.0192 (10)	0.0017 (11)	0.0010 (10)	0.0007 (9)
C15	0.0651 (16)	0.0307 (11)	0.0206 (10)	-0.0011 (11)	-0.0007 (10)	-0.0007 (9)
C16	0.0582 (15)	0.0293 (11)	0.0200 (10)	0.0024 (10)	0.0005 (9)	0.0008 (8)
C17	0.0522 (14)	0.0300 (11)	0.0209 (10)	0.0015 (10)	-0.0002(9)	0.0001 (8)
C18	0.0567 (15)	0.0321 (11)	0.0240 (10)	0.0001 (11)	0.0012 (10)	0.0015 (9)
C19	0.0539 (14)	0.0304 (11)	0.0175 (9)	0.0010 (10)	-0.0016 (9)	-0.0011 (8)
C20	0.0575 (15)	0.0328 (11)	0.0192 (10)	-0.0004 (10)	-0.0048 (9)	-0.0042 (8)
C21	0.0541 (15)	0.0317 (11)	0.0236 (10)	-0.0035 (10)	-0.0019 (9)	-0.0016 (9)
C22	0.0527 (14)	0.0306 (11)	0.0181 (9)	0.0021 (10)	0.0006 (9)	-0.0004 (8)
C23	0.0522 (14)	0.0305 (11)	0.0178 (9)	0.0006 (10)	-0.0018 (9)	-0.0018 (8)
C24	0.0505 (13)	0.0280 (10)	0.0205 (10)	0.0019 (10)	-0.0025 (9)	-0.0011 (8)
C25	0.0535 (14)	0.0308 (11)	0.0182 (9)	-0.0005 (10)	-0.0002(9)	0.0007 (8)
C26	0.0551 (15)	0.0364 (12)	0.0245 (10)	-0.0053 (11)	-0.0005 (10)	0.0005 (9)
C27	0.0602 (17)	0.0451 (14)	0.0287 (11)	0.0053 (12)	-0.0006 (11)	0.0005 (10)
C28	0.0615 (16)	0.0302 (11)	0.0222 (10)	-0.0011 (11)	-0.0016 (10)	-0.0017 (9)
C29	0.0675 (17)	0.0350 (12)	0.0281 (11)	0.0063 (12)	-0.0026 (11)	-0.0010 (10)
C30	0.0505 (14)	0.0293 (11)	0.0204 (9)	-0.0023 (10)	-0.0057 (9)	-0.0019 (8)
C31	0.0609 (16)	0.0378 (13)	0.0242 (10)	0.0063 (11)	-0.0082 (10)	-0.0058 (9)
C32	0.090 (2)	0.0337 (13)	0.0366 (13)	0.0144 (14)	-0.0268 (14)	-0.0116 (11)
C33	0.096 (2)	0.0302 (13)	0.0458 (15)	-0.0121 (14)	-0.0347 (16)	0.0079 (12)
C34	0.073 (2)	0.0442 (15)	0.0415 (14)	-0.0211 (14)	-0.0112 (13)	0.0096 (12)
C35	0.0546 (15)	0.0377 (13)	0.0339 (12)	-0.0064 (11)	-0.0023 (11)	0.0001 (10)
C36	0.0491 (13)	0.0268 (10)	0.0204 (9)	-0.0036 (9)	0.0044 (9)	-0.0012 (8)
C37	0.0488 (13)	0.0319 (11)	0.0208 (9)	-0.0027 (10)	-0.0016 (9)	0.0012 (8)
C38	0.0407 (12)	0.0289 (11)	0.0255 (10)	-0.0005 (9)	-0.0002 (9)	0.0024 (8)
C39	0.0377 (11)	0.0250 (10)	0.0232 (10)	-0.0021 (8)	0.0017 (8)	-0.0001 (8)
C40	0.0427 (12)	0.0274 (10)	0.0208 (9)	-0.0010 (9)	-0.0001 (8)	-0.0002 (8)

supplementary materials

supplementary materials

~					0.004.0 (0)	
C41	0.0446 (13)	0.0280 (10)	0.0232 (10)	0.0029 (9)	0.0019 (9)	-0.0006 (8)
C42	0.0377 (12)	0.0265 (10)	0.0227 (9)	-0.0024 (9)	0.0018 (8)	0.0005 (8)
C43	0.0390 (12)	0.0297 (11)	0.0294 (10)	0.0025 (9)	0.0004 (9)	0.0009 (9)
C44	0.0428 (13)	0.0302 (11)	0.0318 (11)	0.0028 (10)	0.0052 (9)	-0.0035 (9)
C45	0.0442 (13)	0.0316 (11)	0.0241 (10)	-0.0042 (10)	0.0029 (9)	-0.0047 (9)
C46	0.0437 (13)	0.0310 (11)	0.0224 (10)	-0.0012 (9)	-0.0019 (9)	-0.0013 (8)
C47	0.0386 (12)	0.0258 (10)	0.0244 (10)	-0.0011 (9)	0.0017 (8)	-0.0013 (8)
C48	0.0439 (13)	0.0350 (12)	0.0280 (10)	0.0063 (10)	-0.0025 (9)	-0.0009 (9)
C49	0.0516 (17)	0.039 (2)	0.028 (2)	0.0061 (16)	-0.005 (2)	0.0007 (17)
C50	0.0476 (19)	0.0464 (19)	0.0376 (17)	-0.0027 (15)	-0.0033 (14)	0.0048 (15)
C51	0.068 (3)	0.068 (3)	0.059 (2)	-0.008 (2)	-0.002 (2)	0.020 (2)
C49′	0.0516 (17)	0.039 (2)	0.028 (2)	0.0061 (16)	-0.005 (2)	0.0007 (17)
C50′	0.0476 (19)	0.0464 (19)	0.0376 (17)	-0.0027 (15)	-0.0033 (14)	0.0048 (15)
C51′	0.068 (3)	0.068 (3)	0.059 (2)	-0.008 (2)	-0.002 (2)	0.020 (2)

Geometric parameters (Å, °)

Br1—C45	1.896 (2)	C28—C29	1.516 (4)
N1—C7	1.395 (3)	C28—H28A	0.9900
N1-C13	1.423 (3)	C28—H28B	0.9900
N1-C1	1.430 (3)	C29—H29A	0.9800
N2-C30	1.409 (3)	C29—H29B	0.9800
N2-C22	1.417 (3)	С29—Н29С	0.9800
N2-C36	1.425 (3)	C30—C31	1.387 (3)
N3—C47	1.379 (3)	C30—C35	1.394 (4)
N3—C40	1.387 (3)	C31—C32	1.386 (4)
N3—C48	1.464 (3)	C31—H31	0.9500
C1—C6	1.369 (4)	C32—C33	1.385 (5)
C1—C2	1.393 (3)	С32—Н32	0.9500
C2—C3	1.382 (4)	C33—C34	1.378 (5)
С2—Н2	0.9500	С33—Н33	0.9500
C3—C4	1.368 (5)	C34—C35	1.380 (4)
С3—Н3	0.9500	C34—H34	0.9500
C4—C5	1.384 (5)	С35—Н35	0.9500
C4—H4	0.9500	C36—C41	1.390 (3)
C5—C6	1.389 (4)	C36—C37	1.401 (3)
С5—Н5	0.9500	C37—C38	1.380 (3)
С6—Н6	0.9500	С37—Н37	0.9500
C7—C8	1.386 (4)	C38—C39	1.399 (3)
C7—C12	1.404 (3)	C38—H38	0.9500
C8—C9	1.381 (4)	C39—C40	1.403 (3)
С8—Н8	0.9500	C39—C42	1.443 (3)
C9—C10	1.388 (4)	C40—C41	1.395 (3)
С9—Н9	0.9500	C41—H41	0.9500
C10-C11	1.379 (4)	C42—C43	1.388 (3)
C10—H10	0.9500	C42—C47	1.415 (3)
C11—C12	1.372 (4)	C43—C44	1.387 (3)
C11—H11	0.9500	C43—H43	0.9500
С12—Н12	0.9500	C44—C45	1.397 (3)
C13—C14	1.385 (4)	C44—H44	0.9500

C13—C18	1.405 (3)	C45—C46	1.381 (3)
C14—C15	1.388 (3)	C46—C47	1.400 (3)
C14—H14	0.9500	C46—H46	0.9500
C15—C16	1.395 (3)	C48—C49′	1.511 (5)
C15—H15	0.9500	C48—C49	1.514 (3)
C16—C17	1.397 (3)	C48—H48A	0.9900
C16—C19	1.467 (3)	C48—H48B	0.9900
C17—C18	1.382 (3)	C48—H48C	0.9900
C17—C25	1.526 (3)	C48—H48D	0.9900
C18—H18	0.9500	C49—C50	1.491 (4)
C19—C20	1.391 (3)	C49—H49A	0.9900
C19—C24	1.407 (3)	C49—H49B	0.9900
C20—C21	1.390 (3)	C50—C51	1.511 (4)
C20—H20	0.9500	C50—H50A	0.9900
C21—C22	1.402 (3)	C50—H50B	0.9900
C21—H21	0.9500	C51—H51A	0.9800
C22—C23	1.398 (3)	C51—H51B	0.9800
C23—C24	1.381 (3)	C51—H51C	0.9800
C23—H23	0.9500	C49′—C50′	1.491 (5)
C24—C25	1.518 (3)	C49′—H49C	0.9900
C25—C28	1.538 (3)	C49′—H49D	0.9900
C25—C26	1.543 (3)	C50′—C51′	1.500 (5)
C26—C27	1.520 (4)	С50′—Н50С	0.9900
C26—H26A	0.9900	C50′—H50D	0.9900
C26—H26B	0.9900	C51′—H51D	0.9800
C27—H27A	0.9800	C51′—H51E	0.9800
С27—Н27В	0.9800	C51′—H51F	0.9800
С27—Н27С	0.9800		
C7—N1—C13	120.01 (19)	H29B—C29—H29C	109.5
C7—N1—C1	120.8 (2)	C31—C30—C35	119.0 (2)
C13—N1—C1	117.5 (2)	C31—C30—N2	121.6 (2)
C30—N2—C22	122.21 (19)	C35—C30—N2	119.4 (2)
C30—N2—C36	119.42 (18)	C32—C31—C30	119.6 (3)
C22—N2—C36	117.94 (18)	С32—С31—Н31	120.2
C47—N3—C40	108.14 (18)	С30—С31—Н31	120.2
C47—N3—C48	126.71 (18)	C33—C32—C31	121.3 (3)
C40—N3—C48	125.02 (18)	С33—С32—Н32	119.3
C6—C1—C2	120.2 (2)	С31—С32—Н32	119.3
C6—C1—N1	118.4 (2)	C34—C33—C32	119.0 (3)
C2-C1-N1	121.3 (2)	С34—С33—Н33	120.5
C3—C2—C1	119.2 (3)	С32—С33—Н33	120.5
C3—C2—H2	120.4	C33—C34—C35	120.4 (3)
C1—C2—H2	120.4	C33—C34—H34	119.8
C4—C3—C2	120.9 (3)	C35—C34—H34	119.8
С4—С3—Н3	119.6	C34—C35—C30	120.8 (3)
С2—С3—Н3	119.6	C34—C35—H35	119.6
C3—C4—C5	119.7 (3)	C30—C35—H35	119.6
C3—C4—H4	120.1	C41—C36—C37	121.2 (2)

C5—C4—H4	120.1	C41—C36—N2	119.5 (2)
C4—C5—C6	120.0 (3)	C37—C36—N2	119.35 (19)
C4—C5—H5	120.0	C38—C37—C36	121.0 (2)
С6—С5—Н5	120.0	С38—С37—Н37	119.5
C1—C6—C5	119.9 (3)	С36—С37—Н37	119.5
С1—С6—Н6	120.0	C37—C38—C39	119.1 (2)
С5—С6—Н6	120.0	С37—С38—Н38	120.4
C8—C7—N1	121.1 (2)	С39—С38—Н38	120.4
C8—C7—C12	117.5 (2)	C38—C39—C40	119.1 (2)
N1—C7—C12	121.4 (2)	C38—C39—C42	134.2 (2)
C9—C8—C7	120.8 (2)	C40—C39—C42	106.67 (18)
С9—С8—Н8	119.6	N3—C40—C41	128.1 (2)
С7—С8—Н8	119.6	N3—C40—C39	109.50 (18)
C8—C9—C10	121.3 (3)	C41—C40—C39	122.36 (19)
С8—С9—Н9	119.3	C36—C41—C40	117.2 (2)
С10—С9—Н9	119.3	C36—C41—H41	121.4
$C_{11} - C_{10} - C_{9}$	118 1 (3)	C40—C41—H41	121.4
C11—C10—H10	121.0	C43 - C42 - C47	119 45 (19)
C9-C10-H10	121.0	C_{43} C_{42} C_{39}	1344(2)
C_{12} C_{11} C_{10}	121.0 121.1(2)	C47 - C42 - C39	104.4(2) 106.18(19)
C_{12} C_{11} H_{11}	110 4	C44 - C43 - C42	100.10(1)
$C_{12} = C_{11} = H_{11}$	119.4	C44 $C43$ $H43$	120.0 (2)
C_{11} C_{12} C_{7}	119.4	$C_{44} = C_{43} = H_{43}$	120.0
$C_{11} = C_{12} = C_{12}$	121.1 (2)	$C_{42} = C_{43} = 1143$	120.0
C11 - C12 - H12	119.4	$C_{43} = C_{44} = C_{43}$	110.9 (2)
$C_{14} C_{12} C_{18}$	119.4	C45 - C44 - H44	120.5
C14 - C13 - C18	120.1(2)	C43 - C44 - H44	120.5
C14 - C13 - N1	120.6 (2)	C46 - C45 - C44	123.6 (2)
C18—C13—N1	119.2 (2)	C46 - C45 - Br1	11/.9/(1/)
	121.1 (2)	C44—C45—Br1	118.43 (17)
C13—C14—H14	119.4	C45 - C46 - C47	116.3 (2)
C15—C14—H14	119.4	C45—C46—H46	121.8
C14—C15—C16	118.9 (2)	C47—C46—H46	121.8
C14—C15—H15	120.6	N3—C47—C46	128.8 (2)
C16—C15—H15	120.6	N3—C47—C42	109.50 (18)
C15—C16—C17	119.9 (2)	C46—C47—C42	121.7 (2)
C15—C16—C19	131.3 (2)	N3—C48—C49′	115.4 (5)
C17—C16—C19	108.72 (19)	N3—C48—C49	113.9 (3)
C18—C17—C16	121.2 (2)	N3—C48—H48A	108.8
C18—C17—C25	127.6 (2)	C49′—C48—H48A	123.5
C16—C17—C25	111.1 (2)	C49—C48—H48A	108.8
C17—C18—C13	118.6 (2)	N3—C48—H48B	108.8
C17—C18—H18	120.7	C49′—C48—H48B	89.9
C13—C18—H18	120.7	C49—C48—H48B	108.8
C20—C19—C24	120.0 (2)	H48A—C48—H48B	107.7
C20—C19—C16	132.3 (2)	N3—C48—H48C	108.4
C24—C19—C16	107.8 (2)	C49′—C48—H48C	108.4
C21—C20—C19	119.6 (2)	C49—C48—H48C	90.8
C21—C20—H20	120.2	H48B—C48—H48C	125.2
C19—C20—H20	120.2	N3—C48—H48D	108.4

C20—C21—C22	120.5 (2)	C49′—C48—H48D	108.4
C20—C21—H21	119.8	C49—C48—H48D	125.1
C22—C21—H21	119.8	H48A—C48—H48D	88.0
C23—C22—C21	119.8 (2)	H48C—C48—H48D	107.5
C23—C22—N2	119.17 (19)	C50—C49—C48	113.9 (3)
C21—C22—N2	121.0 (2)	С50—С49—Н49А	108.8
C24—C23—C22	119.7 (2)	C48—C49—H49A	108.8
C24—C23—H23	120.1	C50—C49—H49B	108.8
С22—С23—Н23	120.1	C48—C49—H49B	108.8
C23—C24—C19	120.4 (2)	H49A—C49—H49B	107.7
C23—C24—C25	128.1 (2)	C49—C50—C51	110.5 (3)
C19—C24—C25	111.48 (19)	C49—C50—H50A	109.6
C24—C25—C17	100.81 (18)	C51—C50—H50A	109.6
C24—C25—C28	111.8 (2)	C49—C50—H50B	109.6
C17—C25—C28	112.35 (18)	C51—C50—H50B	109.6
C24—C25—C26	112.07 (19)	H50A—C50—H50B	108.1
C17—C25—C26	110.7 (2)	C50-C51-H51A	109.5
C28—C25—C26	108.90 (19)	C50—C51—H51B	109.5
C27—C26—C25	114.9 (2)	H51A—C51—H51B	109.5
C27—C26—H26A	108.5	C50-C51-H51C	109.5
C25—C26—H26A	108.5	H51A—C51—H51C	109.5
С27—С26—Н26В	108.5	H51B—C51—H51C	109.5
C25—C26—H26B	108.5	C50'—C49'—C48	109.8 (5)
H26A—C26—H26B	107.5	С50'—С49'—Н49С	109.7
С26—С27—Н27А	109.5	C48—C49′—H49C	109.7
С26—С27—Н27В	109.5	C50'—C49'—H49D	109.7
H27A—C27—H27B	109.5	C48—C49′—H49D	109.7
С26—С27—Н27С	109.5	H49C—C49′—H49D	108.2
H27A—C27—H27C	109.5	C49'—C50'—C51'	108.5 (5)
H27B—C27—H27C	109.5	C49'—C50'—H50C	110.0
C29—C28—C25	114.20 (19)	С51'—С50'—Н50С	110.0
C29—C28—H28A	108.7	C49'—C50'—H50D	110.0
C25—C28—H28A	108.7	C51'—C50'—H50D	110.0
C29—C28—H28B	108.7	H50C—C50′—H50D	108.4
C25—C28—H28B	108.7	C50'—C51'—H51D	109.5
H28A—C28—H28B	107.6	C50'—C51'—H51E	109.5
С28—С29—Н29А	109.5	H51D—C51′—H51E	109.5
С28—С29—Н29В	109.5	C50'—C51'—H51F	109.5
H29A—C29—H29B	109.5	H51D—C51′—H51F	109.5
С28—С29—Н29С	109.5	H51E—C51′—H51F	109.5
H29A—C29—H29C	109.5		
C7—N1—C1—C6	130.2 (3)	C18—C17—C25—C26	60.7 (3)
C13—N1—C1—C6	-64.6 (3)	C16—C17—C25—C26	-116.1 (2)
C7—N1—C1—C2	-49.5 (4)	C24—C25—C26—C27	-57.3 (3)
C13—N1—C1—C2	115.7 (3)	C17—C25—C26—C27	54.4 (3)
C6—C1—C2—C3	1.3 (4)	C28—C25—C26—C27	178.4 (2)
N1—C1—C2—C3	-178.9 (3)	C24—C25—C28—C29	52.0 (3)
C1—C2—C3—C4	-0.5 (5)	C17—C25—C28—C29	-60.6 (3)

C2—C3—C4—C5	-0.8 (5)	C26—C25—C28—C29	176.4 (2)
C3—C4—C5—C6	1.3 (5)	C22—N2—C30—C31	-27.5 (3)
C2-C1-C6-C5	-0.8 (4)	C36—N2—C30—C31	144.8 (2)
N1—C1—C6—C5	179.4 (3)	C22—N2—C30—C35	153.0 (2)
C4—C5—C6—C1	-0.5 (5)	C36—N2—C30—C35	-34.7 (3)
C13—N1—C7—C8	171.9 (2)	C35—C30—C31—C32	-0.3 (3)
C1—N1—C7—C8	-23.3 (4)	N2-C30-C31-C32	-179.8 (2)
C13—N1—C7—C12	-7.4 (3)	C30—C31—C32—C33	0.4 (4)
C1—N1—C7—C12	157.5 (2)	C31—C32—C33—C34	0.2 (4)
N1—C7—C8—C9	-179.6 (2)	C32—C33—C34—C35	-0.9 (4)
C12—C7—C8—C9	-0.3 (4)	C33—C34—C35—C30	1.0 (4)
C7—C8—C9—C10	1.7 (4)	C31—C30—C35—C34	-0.5 (4)
C8—C9—C10—C11	-1.6 (4)	N2-C30-C35-C34	179.1 (2)
C9—C10—C11—C12	0.1 (4)	C30—N2—C36—C41	-50.9 (3)
C10-C11-C12-C7	1.3 (4)	C22—N2—C36—C41	121.7 (2)
C8—C7—C12—C11	-1.2 (4)	C30—N2—C36—C37	129.3 (2)
N1—C7—C12—C11	178.1 (2)	C22—N2—C36—C37	-58.1(3)
C7—N1—C13—C14	121.1 (3)	C41—C36—C37—C38	2.0 (4)
C1—N1—C13—C14	-44.3 (3)	N2-C36-C37-C38	-178.2 (2)
C7—N1—C13—C18	-55.7 (3)	C36—C37—C38—C39	0.3 (3)
C1 - N1 - C13 - C18	139.0 (2)	C37—C38—C39—C40	-2.1(3)
C18—C13—C14—C15	1.8 (4)	C37—C38—C39—C42	179.2 (2)
N1-C13-C14-C15	-175.0(2)	C47—N3—C40—C41	179.1 (2)
C_{13} C_{14} C_{15} C_{16}	1.7 (4)	C48 - N3 - C40 - C41	-4.8(4)
C14-C15-C16-C17	-3.0(4)	C47 - N3 - C40 - C39	-1.2(3)
C14—C15—C16—C19	177.0 (3)	C48—N3—C40—C39	174.9 (2)
C_{15} C_{16} C_{17} C_{18}	10(4)	$C_{38} - C_{39} - C_{40} - N_{3}$	-177.8(2)
C19-C16-C17-C18	-1790(2)	C42-C39-C40-N3	12(2)
C_{15} C_{16} C_{17} C_{25}	178.1(2)	$C_{38} - C_{39} - C_{40} - C_{41}$	1.2(2) 1.9(3)
C19-C16-C17-C25	-1.9(3)	C42-C39-C40-C41	-179.1(2)
C_{16} C_{17} C_{18} C_{13}	24(4)	C_{37} C_{36} C_{41} C_{40}	-2.1(3)
C_{25} C_{17} C_{18} C_{13}	-1742(2)	N2-C36-C41-C40	1781(2)
C_{14} C_{13} C_{18} C_{17}	-37(4)	N_{3} C40 C41 C36	179.8 (2)
N1-C13-C18-C17	1731(2)	C_{39} C_{40} C_{41} C_{36}	0.2(3)
C_{15} C_{16} C_{19} C_{20}	0.4(5)	C_{38} C_{39} C_{42} C_{43}	-1.6(5)
C_{17} C_{16} C_{19} C_{20}	-1795(3)	C40-C39-C42-C43	1.0(3) 1797(2)
C_{15} C_{16} C_{19} C_{24}	-179.8(3)	C_{38} C_{39} C_{42} C_{47}	179.7(2) 178.0(2)
C17 - C16 - C19 - C24	0.2(3)	C40-C39-C42-C47	-0.7(2)
$C_{17}^{24} = C_{10}^{21} = C_{10}^{21} = C_{21}^{21}$	-1.7(4)	C47 - C42 - C43 - C44	-0.1(3)
$C_{16} - C_{19} - C_{20} - C_{21}$	1.7(4) 1780(3)	$C_{47} - C_{42} - C_{43} - C_{44}$	1795(2)
$C_{10} = C_{10} = C_{20} = C_{21} = C_{22}$	170.0(5) 14(4)	C_{42} C_{43} C_{44} C_{45}	-0.1(3)
$C_{20} = C_{21} = C_{22} = C_{23}$	-0.6(4)	C_{42} C_{43} C_{44} C_{45} C_{46}	0.1(3)
$C_{20} = C_{21} = C_{22} = C_{23}$	-1790(2)	$C_{43} = C_{44} = C_{45} = C_{40}$	179.46(18)
$C_{20} = C_{21} = C_{22} = C_{13}$	1365(2)	C44 - C45 - C46 - C47	0.0(4)
C_{36} C_{26} C_{27} C_{23} C_{23}	-350(2)	$Br1_C45_C46_C47$	-170.32(17)
$C_{30} = N_2 = C_{22} = C_{23}$	-45.1(3)	C_{40} N3 C_{47} C_{46}	-170.0(2)
$C_{30} = N_2 = C_{22} = C_{21}$	142 5 (2)	C40 - 13 - C47 - C40 C48 - N3 - C47 - C46	$\frac{1}{2},\frac{7}{2},\frac{7}{2}$
$C_{20} = 112 = 0.22 = 0.21$	172.3(2) 0.1(4)	C40 N3 C47 C42	(-7)
$N_{2}^{-}C$	178 6 (2)	C48 = N3 = C47 = C42	-1753(2)
112 OLL OLJ OLT	1,0.0 (2)	0 + 0 + 1 + 3 - 0 + 7 - 0 + 2	1 / 5.5 (4)

C22—C23—C24—C19	-0.4 (4)	C45—C46—C47—N3	-179.5 (2)
C22—C23—C24—C25	179.4 (2)	C45—C46—C47—C42	-0.2 (3)
C20-C19-C24-C23	1.2 (4)	C43—C42—C47—N3	179.7 (2)
C16—C19—C24—C23	-178.6 (2)	C39—C42—C47—N3	0.0 (2)
C20—C19—C24—C25	-178.7 (2)	C43—C42—C47—C46	0.3 (3)
C16—C19—C24—C25	1.6 (3)	C39—C42—C47—C46	-179.4 (2)
C23—C24—C25—C17	177.6 (2)	C47—N3—C48—C49′	-83.2 (4)
C19—C24—C25—C17	-2.5 (3)	C40—N3—C48—C49′	101.4 (4)
C23—C24—C25—C28	58.1 (3)	C47—N3—C48—C49	-105.5 (3)
C19—C24—C25—C28	-122.1 (2)	C40—N3—C48—C49	79.0 (3)
C23—C24—C25—C26	-64.5 (3)	N3—C48—C49—C50	66.4 (4)
C19—C24—C25—C26	115.3 (2)	C49′—C48—C49—C50	-32.5 (15)
C18—C17—C25—C24	179.5 (2)	C48—C49—C50—C51	173.2 (3)
C16—C17—C25—C24	2.6 (3)	N3—C48—C49′—C50′	-63.3 (9)
C18—C17—C25—C28	-61.3 (3)	C49—C48—C49'—C50'	27.2 (11)
C16—C17—C25—C28	121.8 (2)	C48—C49′—C50′—C51′	179.8 (8)

Hydrogen-bond geometry (Å, °)

Cg1-Cg3 are the centroids of the C13-C18, C7-C12 and C36…C41 rings, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
C10—H10…Cg1 ⁱ	0.95	2.67	3.444 (3)	139
C20—H20··· <i>Cg</i> 2 ⁱⁱ	0.95	2.85	3.579 (2)	135
C44—H44···· $Cg3^{iii}$	0.95	2.99	3.836 (3)	149

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*+3/2, -*y*-1/2, *z*+1/2.